A Massive WiFi Vulnerability "KRACK Attack"
[full_width]
All WiFi Devices at Risk. A New WPA2 WiFi Vulnerability called KRACK Attack Threatens All WiFi Users Around The World
Belgium researchers discovered serious weaknesses in WPA2, a protocol that secures all modern protected Wi-Fi networks. An attacker within range of a victim can exploit these weaknesses using key reinstallation attacks (KRACKs).
KRACKs - key reinstallation attacks
Concretely, attackers can use this novel attack technique to read information that was previously assumed to be safely encrypted. This can be abused to steal sensitive information such as credit card numbers, passwords, chat messages, emails, photos, and so on. The attack works against all modern protected Wi-Fi networks. Depending on the network configuration, it is also possible to inject and manipulate data. For example, an attacker might be able to inject ransomware or other malware into websites.
Affected Devices
Researchers discovered that Android, Linux, Apple, Windows, OpenBSD, MediaTek, Linksys, and others, are all affected by some variant of the attacks.
For more information about specific products, consult the database of CERT/CC, or contact your vendor.
Researcher will be present at CCS & Black Hat Conferences
The research behind the attack will be presented at the Computer and Communications Security (CCS) conference, and at the Black Hat Europe conference. Our detailed research paper can already be downloaded.
How these Attack Works
Breaking WPA2 by forcing nonce reuse
When a client joins a network, it executes the 4-way handshake to negotiate a fresh encryption key. It will install this key after receiving message 3 of the 4-way handshake. Once the key is installed, it will be used to encrypt normal data frames using an encryption protocol. However, because messages may be lost or dropped, the Access Point (AP) will re-transmit message 3 if it did not receive an appropriate response as acknowledgment. As a result, the client may receive message 3 multiple times. Each time it receives this message, it will reinstall the same encryption key, and thereby reset the incremental transmit packet number (nonce) and receive replay counter used by the encryption protocol. We show that an attacker can force these nonce resets by collecting and replaying re-transmissions of message 3 of the 4-way handshake. By forcing nonce reuse in this manner, the encryption protocol can be attacked, e.g., packets can be replayed, decrypted, and/or forged. The same technique can also be used to attack the group key, PeerKey, TDLS, and fast BSS transition handshake.
Key reinstallation attacks: high level description
The researchers also share a proof-of-concept video demonstrating the vulnerability in Linux and Android:
As a proof-of-concept Researcher executed a key reinstallation attack against an Android smartphone. In this demonstration, the attacker is able to decrypt all data that the victim transmits. For an attacker this is easy to accomplish, because our key reinstallation attack is exceptionally devastating against Linux and Android 6.0 or higher. This is because Android and Linux can be tricked into (re)installing an all-zero encryption key (see below for more info). When attacking other devices, it is harder to decrypt all packets, although a large number of packets can nevertheless be decrypted. In any case, the following demonstration highlights the type of information that an attacker can obtain when performing key reinstallation attacks against protected Wi-Fi networks:
Assigned CVE identifiers
The following Common Vulnerabilities and Exposures (CVE) identifiers were assigned to track which products are affected by specific instantiations of our key reinstallation attack:
CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the 4-way handshake.
CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake.
CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way handshake.
CVE-2017-13080: Reinstallation of the group key (GTK) in the group key handshake.
CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group key handshake.
CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT) Reassociation Request and reinstalling the pairwise encryption key (PTK-TK) while processing it.
CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake.
CVE-2017-13086: reinstallation of the Tunneled Direct-Link Setup (TDLS) PeerKey (TPK) key in the TDLS handshake.
CVE-2017-13087: reinstallation of the group key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.
CVE-2017-13088: reinstallation of the integrity group key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.
Note that each CVE identifier represents a specific instantiation of a key reinstallation attack. This means each CVE ID describes a specific protocol vulnerability, and therefore many vendors are affected by each individual CVE ID. You can also read vulnerability note VU#228519 of CERT/CC for additional details on which products are known to be affected.
PAPER
Our research paper behind the attack is titled Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 and will be presented at the Computer and Communications Security (CCS) conference on Wednesday 1 November 2017.
Although this paper is made public now, it was already submitted for review on 19 May 2017. After this, only minor changes were made. As a result, the findings in the paper are already several months old. In the meantime, we have found easier techniques to carry out our key reinstallation attack against the 4-way handshake. With our novel attack technique, it is now trivial to exploit implementations that only accept encrypted retransmissions of message 3 of the 4-way handshake. In particular this means that attacking macOS and OpenBSD is significantly easier than discussed in the paper.
Official paper on Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2
Download Official Paper :
https://papers.mathyvanhoef.com/ccs2017.pdf
Some Common Questions :
Should You change your Wi-Fi password?
Changing the password of your Wi-Fi network does not prevent (or mitigate) the attack. So you do not have to update the password of your Wi-Fi network. Instead, you should make sure all your devices are updated, and you should also update the firmware of your router. After updating your router, you can optionally change the Wi-Fi password as an extra precaution
Is Your device vulnerable?
Probably. Any device that uses Wi-Fi is likely vulnerable. Contact your vendor for more information.
All WiFi Devices at Risk. A New WPA2 WiFi Vulnerability called KRACK Attack Threatens All WiFi Users Around The World
Belgium researchers discovered serious weaknesses in WPA2, a protocol that secures all modern protected Wi-Fi networks. An attacker within range of a victim can exploit these weaknesses using key reinstallation attacks (KRACKs).
KRACKs - key reinstallation attacks
Concretely, attackers can use this novel attack technique to read information that was previously assumed to be safely encrypted. This can be abused to steal sensitive information such as credit card numbers, passwords, chat messages, emails, photos, and so on. The attack works against all modern protected Wi-Fi networks. Depending on the network configuration, it is also possible to inject and manipulate data. For example, an attacker might be able to inject ransomware or other malware into websites.
This is the first attack against the WPA2 protocol that doesn't rely on password guessing. Indeed, other attacks against WPA2-enabled network are against surrounding technologies such as Wi-Fi Protected Setup (WPS), or are attacks against older standards such as WPA-TKIP. Put differently, none of the existing attacks were against the 4-way handshake or against cipher suites defined in the WPA2 protocol. In contrast, our key reinstallation attack against the 4-way handshake (and against other handshakes) highlights vulnerabilities in the WPA2 protocol itself.
Affected Devices
Researchers discovered that Android, Linux, Apple, Windows, OpenBSD, MediaTek, Linksys, and others, are all affected by some variant of the attacks.
For more information about specific products, consult the database of CERT/CC, or contact your vendor.
Researcher will be present at CCS & Black Hat Conferences
The research behind the attack will be presented at the Computer and Communications Security (CCS) conference, and at the Black Hat Europe conference. Our detailed research paper can already be downloaded.
How these Attack Works
Breaking WPA2 by forcing nonce reuse
When a client joins a network, it executes the 4-way handshake to negotiate a fresh encryption key. It will install this key after receiving message 3 of the 4-way handshake. Once the key is installed, it will be used to encrypt normal data frames using an encryption protocol. However, because messages may be lost or dropped, the Access Point (AP) will re-transmit message 3 if it did not receive an appropriate response as acknowledgment. As a result, the client may receive message 3 multiple times. Each time it receives this message, it will reinstall the same encryption key, and thereby reset the incremental transmit packet number (nonce) and receive replay counter used by the encryption protocol. We show that an attacker can force these nonce resets by collecting and replaying re-transmissions of message 3 of the 4-way handshake. By forcing nonce reuse in this manner, the encryption protocol can be attacked, e.g., packets can be replayed, decrypted, and/or forged. The same technique can also be used to attack the group key, PeerKey, TDLS, and fast BSS transition handshake.
Key reinstallation attacks: high level description
The flaw lies in the 4-way handshake used to create an encryption key to secure the traffic, according to a researcher.
In a key reinstallation attack, the adversary tricks a victim into reinstalling an already-in-use key. This is achieved by manipulating and replaying cryptographic handshake messages. When the victim reinstalls the key, associated parameters such as the incremental transmit packet number (i.e. nonce) and receive packet number (i.e. replay counter) are reset to their initial value. Essentially, to guarantee security, a key should only be installed and used once. Unfortunately, we found this is not guaranteed by the WPA2 protocol. By manipulating cryptographic handshakes, we can abuse this weakness in practice.
The researchers also share a proof-of-concept video demonstrating the vulnerability in Linux and Android:
As a proof-of-concept Researcher executed a key reinstallation attack against an Android smartphone. In this demonstration, the attacker is able to decrypt all data that the victim transmits. For an attacker this is easy to accomplish, because our key reinstallation attack is exceptionally devastating against Linux and Android 6.0 or higher. This is because Android and Linux can be tricked into (re)installing an all-zero encryption key (see below for more info). When attacking other devices, it is harder to decrypt all packets, although a large number of packets can nevertheless be decrypted. In any case, the following demonstration highlights the type of information that an attacker can obtain when performing key reinstallation attacks against protected Wi-Fi networks:
Assigned CVE identifiers
The following Common Vulnerabilities and Exposures (CVE) identifiers were assigned to track which products are affected by specific instantiations of our key reinstallation attack:
CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the 4-way handshake.
CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake.
CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way handshake.
CVE-2017-13080: Reinstallation of the group key (GTK) in the group key handshake.
CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group key handshake.
CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT) Reassociation Request and reinstalling the pairwise encryption key (PTK-TK) while processing it.
CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake.
CVE-2017-13086: reinstallation of the Tunneled Direct-Link Setup (TDLS) PeerKey (TPK) key in the TDLS handshake.
CVE-2017-13087: reinstallation of the group key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.
CVE-2017-13088: reinstallation of the integrity group key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame.
Note that each CVE identifier represents a specific instantiation of a key reinstallation attack. This means each CVE ID describes a specific protocol vulnerability, and therefore many vendors are affected by each individual CVE ID. You can also read vulnerability note VU#228519 of CERT/CC for additional details on which products are known to be affected.
PAPER
Our research paper behind the attack is titled Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 and will be presented at the Computer and Communications Security (CCS) conference on Wednesday 1 November 2017.
Although this paper is made public now, it was already submitted for review on 19 May 2017. After this, only minor changes were made. As a result, the findings in the paper are already several months old. In the meantime, we have found easier techniques to carry out our key reinstallation attack against the 4-way handshake. With our novel attack technique, it is now trivial to exploit implementations that only accept encrypted retransmissions of message 3 of the 4-way handshake. In particular this means that attacking macOS and OpenBSD is significantly easier than discussed in the paper.
Official paper on Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2
Download Official Paper :
https://papers.mathyvanhoef.com/ccs2017.pdf
Some Common Questions :
Should You change your Wi-Fi password?
Changing the password of your Wi-Fi network does not prevent (or mitigate) the attack. So you do not have to update the password of your Wi-Fi network. Instead, you should make sure all your devices are updated, and you should also update the firmware of your router. After updating your router, you can optionally change the Wi-Fi password as an extra precaution
Is Your device vulnerable?
Probably. Any device that uses Wi-Fi is likely vulnerable. Contact your vendor for more information.
A Massive WiFi Vulnerability "KRACK Attack"
Reviewed by Haxbaba Tech
on
04:49
Rating:
What is WiFi Security Risk KRACK What is WiFi Security Risk KRACK – We have run over with a security deformity known as KRACK which revealed the weakness in Wi-Fi Networks far and wide. The imperfection attack has been viable against all devices yet prominently against Android ones. The KRACK impacts the WPA2 Protocol available in Wi-Fi Security part.
ReplyDelete